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Abstract

In a warming world an increasing number of people are being exposed to heat, making a comfortable
thermal environment an important need. This study explores the potential of using Regional Internet
Search Frequencies (RISF) for air conditioning devices as an indicator for thermal discomfort (i.e.
dissatisfaction with the thermal environment) with the aim to quantify the adaptation potential of
individuals living across different climate zones and at the high end of the temperature range, in
India, where access to health data is limited. We related RISF for the years 2011-2015 to daily daytime
outdoor temperature in 17 states and determined at which temperature RISF for air conditioning
starts to peak, i.e. crosses a ‘heat threshold’, in each state. Using the spatial variation in heat
thresholds, we explored whether people continuously exposed to higher temperatures show a lower
response to heat extremes through adaptation (e.g. physiological, behavioural or psychological).
State-level heat thresholds ranged from 25.9 °C in Madhya Pradesh to 31.0 °C in Orissa. Local

adaptation was found to occur at state level: the higher the average temperature in a state, the higher
the heat threshold; and the higher the intra-annual temperature range (warmest minus coldest
month) the lower the heat threshold. These results indicate there is potential within India to adapt to
warmer temperatures, but that a large intra-annual temperature variability attenuates this potential to
adapt to extreme heat. This winter ‘reset’ mechanism should be taken into account when assessing the

impact of global warming, with changes in minimum temperatures being an important factor in
addition to the change in maximum temperatures itself. Our findings contribute to a better
understanding of local heat thresholds and people’s adaptive capacity, which can support the design
of local thermal comfort standards and early heat warning systems.

1. Introduction

Gradual global warming in combination with one of
the strongest El Niflo events to date led to record high
temperatures across the world in 2015 and 2016 [1, 2].
The devastating impact of a single heat wave in India
in May 2015, with over 2200 fatalities, demonstrated
that extreme heat is a serious issue even in countries
regularly exposed to high temperatures [3, 4]. The
Intergovernmental Panel on Climate Change (IPCC)
has declared heat stress as one of the key health risks

in Asia [5]. Heatwaves are expected to continue to
increase not only in intensity, but also in duration and
frequency [5-7].

Various studies have provided evidence for heat-
related health impacts in a range of geographical
and contrasting income settings [8—10]. Such studies
usually rely on heat thresholds to specify weather con-
ditions above which increased negative health effects
are observed in a population. While the majority of
these studies have identified thresholds for the most
extreme impact of heat stress—increased mortality—
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Table 1. Included and excluded search terms for Regional Internet
Search Frequencies (RISF).

Included search terms Excluded search terms

AC, air conditioner, air Milan, Milano, cooler, water

conditioning, Voltas, Lg air

it remains unclear when people start to experience
thermal (dis)comfort. Thermal discomfort (i.e. dissat-
isfaction with the thermal environment) is not only a
potential health hazard, it also impairs people’s ability
to function effectively [ 11-14] and their satisfaction e.g.
at home, at work or elsewhere [15].

To understand how humans react to global warm-
ing it is important to understand their ability to adapt
to extremes of heat. Human adaptation to heat (and
cold) involves a complex set of physiological (body
acclimatisation to local prevalent climate) [16-18],
behavioural (personal, technological and cultural) [16—
18] and psychological (habituation, expectation and
preferences) [16—18] factors. While there is evidence
for adaptation, based on spatial variations in health
outcomes related to heat indicators and on few studies
which analysed variation in temperature-related mor-
tality over time in one location [19], such quantitative
approaches are less applicable to low- and mid-income
countries, where recent and good quality health data is
usually not available.

With this study we aim to understand thermal
discomfort through the analysis of internet search
behaviour, using India as a case study. Air conditioning
is acknowledged as being an effective protective mea-
sure against heat stress [20] and as such we assume that
the weather conditions at which people start search-
ing the internet for air conditioning devices can be
indicative for thermal discomfort, an assumption we
will further test. Additionally, we examine whether
there is spatial variation in thermal discomfort across
different states in India and, if so, whether it can be
related to differences in long-term average climate of
these states. Such arelationship would signal adaptation
potential of people to heat.

Regional Internet Search Frequencies (RISF), pro-
vided by major search engines like Google, have been
used for many purposes, including health surveillance
[21-23]. However, only a limited number of studies
have so far used RISF or other online social media ser-
vices, like twitter, to study heat exposure and thermal
discomfort [24]. New in our study is that we relate
RISF to actual weather conditions via mechanistic con-
cepts, which allow us to quantify a specific degree
of heat discomfort, namely the weather condition
at which people feel the need for air conditioning.

India, where high quality health data is largely lack-
ing [25], makes an interesting case study to investigate
thermal discomfort with the majority of its popula-
tion already exposed to prolonged high temperatures
during summer. At the same time, heat exposure
varies between states due to the country’s distinct
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climate zones [26], and different regional behavioural
practices.

2. Methods

2.1. RISF data

RISF are available online on Google Trends [27]
and represent a single or a number of specific key-
word searches relative to all searches conducted in
Google, normalised from 0-100 (hence frequencies).
One hundred represents the maximum fraction of
internet searches within the selected time period for
any of the keywords if multiple keywords are requested,
or any of the locations if multiple locations are
requested. RISF data are currently made openly avail-
able with a weekly time resolution. For India, search
frequencies are available at state level.

We scanned RISFs for a range of search terms,
each reflecting some sort of electrical heat relief solu-
tion (i.e. fan, evaporative cooler and air conditioning).
RISF works best when there is a large population of
Google Search users in the area of interest and for
unambiguous search queries that reach a high level of
requests. Rather than stacking different search queries
for different electrical cooling devices into one single
predictor, which can lead to prediction errors [28],
we narrowed our approach down to the search term
returning the largest volume of searches, which was
‘air conditioning’ (AC). AC is also a rather unam-
biguous word (unlike ‘fan’) and is used throughout
the country (unlike evaporative cooler, which is tra-
ditionally less popular in states with a sub-tropical
climate [29]). We expect RISF for AC to be a proxy
for assessing thermal discomfort; when temperatures
rise, people are likely to be interested to buy an AC, to
switch on their AC and find out it needs repair, search
for spare parts, or go to a place with AC (e.g. hotel,
restaurant or cinema), and search for this online.

With Google Correlate, a program that gives for
each search term a list of queries with similar data time
series patterns from 2003 till present we checked for
unwanted search associations with AC and excluded
these from our Google Trends search. An example was
the strong link between ‘AC” and ‘Milan’, the Italian
soccer club. Finally, we added several synonyms for
AC, including names of two widely sold brands, to our
search to account for potential regional differences.
Table 1 gives the search terms related to AC which were
fed into Google Trends, or excluded from our search
query. The selected search terms were stacked to form a
single query for each state (see supplement S1 available
at stacks.iop.org/ERL/13/054009/mmedia).

Although, internet usage in India is expanding
rapidly, with 26% of the population having access
in 2015 [30], search frequencies in several mountain-
ous states in the north and north-east of India and in
smaller union territories were low, leading to substan-
tial noise in the data. Thus, these states were excluded
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from our analysis. Time series data of sufficient
quality were derived for the following 17 Indian
states: Andhra Pradesh, Bihar, Chhattisgarh, Delhi,
Guyjarat, Haryana, Jharkhand, Karnataka, Kerala, Mad-
hya Pradesh, Maharashtra, Odisha, Punjab, Rajasthan,
Tamil Nadu, Uttar Pradesh and West Bengal. Together,
these states cover the main part of peninsular India,
representing a range of different climates and socio-
economic conditions.

2.2. Climate and population data
We obtained six-hourly temperature and humid-
ity data through the ECMWF ReAnalysis-Interim
(ERA-Interim) [31] database, a gridded climatologi-
cal dataset at 0.5° spatial resolution. Mean temperature
over peninsular India and the Indo-Gangetic plain
and its inter-annual variability is well represented by
ERA-Interim, showing the best performance among
reanalysis products [32]. State-wise long-term (1979—
2012) average climate indicators (minimum, mean and
maximum monthly temperature) were derived from
the Watch Forcing Data Era Interim (WFDEI) [33], a
dataset that goes further back in time than ERA-Interim
but with data only available until 2012.

Heat stress is generally considered to be not only
a result of high temperatures, but of a combination
of weather conditions [34, 35]. We considered for our
study minimum, mean, and maximum temperature
and the Heat Index (HI) [35-38], a thermal com-
fort indicator combining air temperature and relative
humidity. Other empirically derived thermal comfort
indices are more complex and require additional input
parameters, often not available. Several studies have
also raised doubts if more elaborated heat indices
applied on a population level would lead to different or
more conclusive results [39—42].

Within Indian states large climate gradients exists.
To achieve a better match between state-wide weather
conditions and the state-wise RISF data we derived
population density-weighted weather variables for each
state. We assume that RISFs are dominated by locations
within a state with high population density—rather
than taking an area based average. For this, the Grid-
ded Population of the World Version 3 (GPWv3) map
at 2.5 arc-minute resolution was obtained from the
Center for International Earth Science Information
Network (CIESIN) [43].

2.3. Heat threshold

To quantify region-specific heat thresholds for ther-
mal discomfort, we formulated a simple mechanistic
heat threshold model, which describes weekly RISF of
‘AC’ as a function of a heat indicator (for example
temperature, HI, wet-bulb temperature or Universal
Thermal Climate Index) and a heat threshold (equa-
tion 1). In its most basic form, simulated RISF increase
when the heat indicator rises above the threshold and
RISF decrease again when the heat indicator drops
below this threshold. Additionally, we introduced
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an empirical saturation function, based on the data
observation that RISF peak when the threshold value is
reached, but search volumes go down when it is hot for
a consecutive period of time: in the meantime people
might have purchased what they needed, searched for
a cooling device out of an impulse triggered by the start
of the hot weather, or may have gotten acclimatised or
used to the heat [18, 44] and thus stopped searching.
Our heat threshold model then reads as:

_ (HO-Ty)
G(t) = a+ * 50

% = fS« (H{t)—Ty) forS()
=>0&H({) >Ty

% =cx fS«(H{t)—Ty) forSy)
>0&H(t) < Ty

ds@ _ _
D0 = forS(1) =0& H(1) < Ty

(1)

Where G(t) are the modelled internet search frequen-
cies [—], H(t) is the observed heat indicator at time
t [day], and a [—] and b are scaling parameters that
account for any scaling applied by the RISF providing
platform. Ty is the heat threshold and S(7) the satura-
tion function. The parameter fS controls how much the
saturation function increases with each degree above
the heat threshold, while c is a scaling parameter that
controls the rate of decrease of the saturation func-
tion (i.e. desaturation) if the observed heat is below
the threshold. To correct for any longer-term trends in
RISF over the five years, e.g. as a result of an increase in
internet users changing the overall pattern of searches
[45], we de-trended the RISF by subtracting any sig-
nificant (p < 0.05) linear trend over the period January
2011 until December 2015.

The AC heat threshold model, implemented in the
programme R (Version 3.2.3), was calibrated to each
state and for the climate variables minimum, mean, and
maximum temperature and the HI separately. Model
fit was expressed by the R’ between modelled and
observed internet searches. To account for parameter
uncertainty of the heat threshold, the model calibra-
tions were run 1000 times allowing a deviation of 2%
in the explained variance, R%.

2.4. Testing assumptions

To verify the robustness of our results and rule out
alternative explanations to a search for AC represent-
ing actual discomfort, rather than it being driven by
seasonally recurring behaviour or external triggers, we
performed two tests.

Recurring behaviour linked to tradition, holidays
or religious festivals (giving, e.g. time to shop or be
online) could potentially also drive search behaviour
and thereby—undesirably—influence our derived heat
threshold if such behaviour coincides with the rise in
temperatures (other random searches would either be
captured as a base level of searches, or be part of the
variation we cannot explain, which in itself is not a
problem). To test for seasonality, we compared our
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Figure 1. Simulated weekly RISF (black line) together with 95% CI (grey range around black line) and actual weekly RISF (red line)
for AC in Delhi from January 2011-December 2015 (a); based on the observed daytime temperature (black line) and observed RISF
(red line, 1a), the modelled daytime temperature threshold value (black dotted horizontal line) above which RISF increase is derived.
The middle horizontal line represents the median threshold (27.1 °C) and the upper and lower lines represent the boundaries of the
95% CI (24.2 °C-29.7 °C). The vertical dark grey bars with the red marking illustrate the moment the heat threshold is exceeded for 10
consecutive days for the first time in a year, their width illustrating the 95% heat threshold CI (b); the saturation function (black line)
increases once daytime temperature crosses the threshold temperature, bringing modelled RISF down. The 95% CI is shown with the

T T T
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‘actual daily weather’” input model with a model using
long-term average daily temperatures (1979-2012) as
input, representing the standard seasonal cycle over
the year (from here onwards referred to as the ‘seasonal
model ). Abetter performing actual daily weather-based
model, expressed by a higher explained variance in
search behaviour, gives confidence that our thresholds
are linked to temperature conditions experienced at
that moment.

In addition, we looked at the first day of threshold
exceedance for each state, defined as the moment the
heat threshold is exceeded the first time in the year
for 10 consecutive days. We reason that if timing of
search peaks and exceedance of heat thresholds differ
per state, the external influence of national campaigns
or nation-wide heat stress warnings is less likely.

2.5. Heat threshold controls

Using the spatial variation in heat thresholds, i.e. the
differences between states, we analysed whether peo-
ple continuously exposed to higher temperatures show
a lower response to heat extremes through adapta-
tion. We correlated state-specific heat thresholds with
temperature-based climate indicators (30 year yearly
averages of monthly mean, minimum, maximum and
the range between minimum and maximum tem-
perature) per state. A relationship would suggest an
adaptation of the heat threshold to local climate. We
carried out a bootstrapped Pearson correlation to find
the best independent climate indicator, followed by an
ordinary least squares regression analysis.

Additionally, we explored the idea that economic
status—with wealthier people more accustomed to
air conditioners [44, 46, 47]—would lead to a lower
acclimatisation and thus to internet searches at lower
temperature thresholds. We checked if state level aver-
age Gross Domestic Product (GDP) per capita from
2011-2015 had a moderation effect on the relation
between local climate and the heat thresholds. Data
was obtained from the Indian Ministry of Statistics and
Programme Implementation [48]. All statistical tests
were performed with IBM SPSS Statistics 23.

3. Results

3.1. State-wise heat thresholds

Both actual RISF and temperature show individual
spikes superimposed on a distinct seasonal fluctua-
tion (figure 1(a) and (b), for Delhi), with low RISF
in winter and a rise and high RISF in summer, which
starts in India around the beginning of April. While
the rise in RISF coincides with a rise in temperature,
RISF subside earlier than temperature. Simulated RISF
with a heat threshold based on daytime temperature
(at noon) follow the actual RISF pattern well for Delhi
(R? = .86). The heat threshold above which RISF for AC
starts rising is 27.1 °C (SD= 1.5, 95% CI (24.2, 29.7),
figure 1(b)). Whenever this heat threshold is exceeded
the saturation function starts building up (figure 1(c)),
reducing modelled search volumes especially around
the second half of the year, when temperatures remain
high, but internet searches decrease.
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Figure 2. Simulated median heat threshold as derived with our AC heat threshold model for Delhi and various states in India, for
2011-2015 in °C (a); WEDEI mean daytime (12:00 PM) temperature (b) and; WFDEI daytime temperature difference between the
warmest and coldest month (¢). With PB = Punjab, HR = Haryana, UP = Uttar Pradesh, BR = Bihar, R] = Rajasthan, MP = Madhya
Pradesh, CG = Chhattisgarh, JH =Jharkhand, WB=West Bengal. OR =Orissa, GJ= Gujarat, MH = Maharashtra, AP =Andhra
Pradesh (including Telangana), KA = Karnataka, KL =Kerala, TN =Tamil Nadu. (Source of temperature reanalysis data: Watch
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Our heat threshold model performs well (R* > 0.7)
for all states (supplement table S2.1 and figure S2.1),
with one exception. Kerala, with a median heat thresh-
old 0f30.7 °C, the second highest from all states, had the
lowest explained variance fit with an R? of .52. Median
heat thresholds range from 25.9 °C (Madhya Pradesh)
upto31.0 °C(Orissa) (figure 2(a) and table S2.1). Ofall
the tested weather variables, our heat stress threshold-
model gives the highest and almost equally good
model fits with daytime temperature (temperature at
noon) and daytime HI. We will mainly show proof
of concept and results for daytime temperature (see
supplement table S2.1), because thresholds in terms of
temperature are generally easier to comprehend [42].

A comparison of the actual daytime temperature
model with the seasonal model, shows that the for-
mer is better able to predict RISE, in terms of higher
explained variance, except for the southern states Ker-
ala and Tamil Nadu (supplement table S2.1, column
7 versus column 9). Seasonal fluctuations in tempera-
ture are modest in these (sub) tropical states and fairly
regular, without extreme temperature spikes. Lastly, we
used the day of first exceedance of the heat thresholds
in each year, i.e. the vertical lines in figures 1(b) and
supplement figure S2.1, to identify any homogenous,
nation-wide patterns in search behaviour triggered by
external factors. The first day of exceedance differs per
state for each year and per year for each state and shows
no strict order amongst states between years, except
that—in general—states coming out of colder win-
ters like Punjab tend to exceed their threshold later

than warmer states like Kerala (figure 3). The yearly
spread, i.e. the difference between the earliest and lat-
est exceedance date between states, in the date of first
exceedance is on average 48 days. The spread is on aver-
age 15 days for each state between different years, with
Maharashtra showing the largest spread (31 days).

3.2. Heat threshold controls

All'local climate indicators were significantly correlated
with the heat thresholds, however, mean minimum
monthly (i.e. temperature of coldest month of the
year) and mean intra-annual temperature range (i.e.
mean temperature of the warmest—coldest month,
figure 2(c)) had the highest correlation coefficients
(table 2). As these two indicators were also almost
perfectly negatively correlated with each other, we
further explored intra-annual temperature range, and
mean monthly temperature instead (figure 2(b)), in an
ordinary least squares regression analysis. Intra-annual
temperature range significantly predicted heat thresh-
old temperature in°C, f=—0.266, t (15) =—5.040,
p<.001 and it explained a significant proportion of
variance in heat thresholds, R = .63, F(1,15) =24.182,
BCa CI [-0.363, —0.212], p<.001. This means for
each degree (°C) increase in intra-annual temperature
differences the heat threshold decreased by 0.27 °C.
Also mean temperature significantly predicted heat
threshold temperature in °C, f=1.099, t (15) = 3.467,
p < .005. It explained a large proportion of heat thresh-
olds, R? = .45, F(1,15) = 12.018, BCa CI [0.680, 1.768],
p <.005. For each degree (°C) increase in the mean
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Table 2. Correlation matrix of different state-wise long-term monthly average daytime temperatures and heat threshold.

Heat Threshold Mean Temp. Min. Temp. ~ Max. Temp.  Intra-annual Temp. Range GDP per capita

Heat Threshold 1 6674 773" —.649% —.793% —0.050
[.452,.857]  [.565,.925] [-.827, —.403] [-.875, =.720] [—.679, .672]

Mean Temp. 1 .885¢ —.419 —.820° —0.053
[.743,.968] [-.729, —.060] [-.932, —.685] [—.453,.763]

Min. Temp. —.669° —.980% —0.050
[—-.866, —.278] [=.991, —.961] [—.483, .804]

Max. Temp. 1 .805% 0.132
[.532,.925] [—.346, .498]

Intra-annual Temp. Range 1 0.076
[=.591, .448]

GDP per capita

1

2 p<0.01 level (2 tailed). N=17. BCa bootstrap 95% ClIs are reported in square brackets. Source GDP per capita (average from 2011—
2015): National Institution for Transforming India, Government of India [48]. Abbreviations: Temp. = Temperature; Min. = Minimum;

Max. = Maximum; GDP = Gross Domestic Product.

monthly temperature the heat threshold increased by
1.1°C.

GDP per capita did not correlate significantly with
heat threshold, r=—.050, 95% BCa CI [-.67, .69],
p=.849. In order to test its impact as a potential mod-
erator that affects the relation between intra-annual
temperature difference and heat threshold, a moder-
ator analysis was performed, however no significant
interaction effect between GDP per capita and intra-
annual temperature difference was found, f=0.000,
t(13) =1.036, 95% CI [0.000, 0.000], p=.319.

4, Discussion

In this study Regional Internet Search Frequencies
(RISF) function as ‘human sensors for defining heat
discomfort for Indian states based on outdoor day-
time temperature. We showed the applicability and
robustness of a heat threshold model to describe
thermal discomfort corresponding to a desire for air-
conditioning (AC) for 17 Indian states—a first to our
knowledge. Our method presents an alternative to sta-
tistical methods that, for example, correlate searches

directly to health surveillance data [49] or social media
posts to temperature [24]. Such methods do find a
strong correlation, but generally pass over the fact that
searches could show threshold behaviour, in our case
by only responding to temperature above a certain
threshold.

Our heat threshold model performed well for the
majority of states. The strong variability between years,
in the day of first exceedance of the heat thresholds,
suggests the derived thresholds reflect distinctive indi-
vidual state-specific search behaviour rather than a
homogenous nationwide reaction to an external trig-
ger. We cannot fully rule out state specific triggers
such as a response to a local weather forecast, which
would represent the anticipation of discomfort, rather
than the discomfort itself. This would, however, fit
our model as an individual would still have to deter-
mine whether the forecasted temperature would lead
to discomfort.

The superiority of the actual weather- over the sea-
sonal model is most obvious in states with high seasonal
variation and distinctive temperature spikes, mainly in
the north of the country. In the tropical southern states,
temperatures are high year-round, seasonal variation
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in temperature is low and temperature spikes are few
and modest. In absence of clear seasonality or spikes
in temperature, other triggers like holiday or festival-
induced shopping sprees might surface more strongly.
Here, also the heat thresholds expressed as Heat Index
(HI) yielded better results than for daytime tempera-
ture. This might be because these southern states, next
to more stable (and high) temperatures throughout the
year, also have high, but seasonally varying, relative
humidity levels. For these states, an index combining
temperature and humidity reflects better when people
start feeling hot.

The influence of intra-annual temperature differ-
ences on thermal discomfort is striking. States that
have a larger temperature difference between winter
and summer show a lower heat threshold, indicating
a lack of short-term acclimatisation during the tran-
sition phase between winter and summer. This might
make people in those states more sensitive to heat as
compared to people who are exposed to high temper-
ature throughout the year. Intra-annual temperature
differences explained 63% of the variance in heat
threshold alone. The opposite, a positive correlation
with the heat threshold, was found for mean tem-
perature as a predictor variable. These results point
to that people exposed to relatively higher temper-
ature throughout the year tend to have higher heat
thresholds, indicating a gradual lessening of response
to heat the warmer a state gets, i.e. the presence of some
form of local adaptation. Whether the main driving
force behind adaptation is dominantly physiological,
behavioural, or even of psychological nature, remains
an open question. Previous research showed comfort-
able indoor office temperatures increase from cooler
towards warmer climates [50, 51], confirming the
pattern we see in this study. However, our results imply
that expected increases in maximum temperature due
to climate change [5] do not directly lead to adaptation
in the form of a higher heat threshold, as long as high
intra-annual temperature differences remain.

Contra to our expectation, we did not find a mod-
eration effect of GDP per capita on the relation between
intra-annual temperature differences and heat thresh-
olds. One reason for this could be that the GDP data
are too aggregated and therefore not representable for
the socio-economic status of individuals searching for
AC on a state level.

Several caveats provide opportunities for future
research. First, derived heat thresholds are only rep-
resentative for the population in India having internet
access, which tends to be dominated by males in urban
areas [45]. People who do not have internet access or do
not search for AC online, might differ from our study
population, due to socio-economic, demographic and
geographical and therefore have a different heat thresh-
old. Higher gender diversified usage and better internet
coverage over the whole country combined with longer
time-series of RISF and climate data will allow for
improving our threshold estimates. Second, looking
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at heat thresholds derived from RISF for a diversity in
electrical cooling devices, such as evaporative coolers
(a very common cooling device in Northern India) or
fans could be an interesting way forward to represent
socio-economic differences, as these cooling devices are
not limited to the upper middle and higher economic
classes only. Third, thermal comfort perceptions can
differ, depending on whether a person is inside or out-
side [52]. We could not go in-depth into the exact
motivation of our study population to search online
for AC during hot periods. Combining RISF with the
in-depth knowledge that can be derived from targeted
surveys on heat perception and AC usage can be a way
forward to investigate the motivation of AC searches
and to verify the thresholds derived from this study.

Defining thermal (dis)comfort through conven-
tional methods such as field-based questionnaires or
chamber experiments is a challenging and resource
intensive task. Recent simulation approaches on the
other hand never directly involve human subjects in
their assessment [53]. Our internet-based measure of
‘feeling hot’ lies in between these different approaches,
with the benefit of being less prone to biases generally
associated with the method of assessing perceptions
through surveys [22] and less resource intensive, but
still having direct feedback from individuals through
their search behaviour.

Our findings can inform policy and practice. First,
despite apparent regional climate differences across
India, it is surprising that air-conditioners in most
Indian office buildings are still operated at temperature
levels around 22.5°C +1°C all year round [54]—so
that standards originating from the western world can
be met. With a 5%—6% reduction in the Energy Per-
formance Index (i.e. annual energy consumption per
square meter of office floor area) per degree possible
[55], the energy saving potential of a more flexi-
ble and location-specific cooling standard, reflecting
the predominant local climate, could be enormous.
Second, our method can further facilitate the develop-
ment of local early heat warning systems. Warnings
should incorporate the course of temperature dur-
ing the winter and spring season rather than focus
on high temperature extremes during peak summer
alone. Finally, this study could be used as a first
careful step towards quantifying the minimum adap-
tation potential within India, and beyond, in light of
tuture global warming. Studies developing future pro-
jections on the impacts (e.g. health [56], decreased
productivity [57], energy demand [58, 59] and health
costs [60], etc.) of extreme heat in a warmer world
should incorporate some form of adaptation in their
long-term projections.

5. Conclusion

This study shows the use of Regional Internet Search
Frequencies (RISF) for air conditioning devices as
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an indicator for thermal discomfort. The spatial
variation in derived heat thresholds across states in
India was used to explore adaptation. Our results indi-
cate there is potential within India to adapt to warmer
temperatures, but that a large intra-annual temperature
variability strongly reduces this potential to adapt, due
to a ‘reset triggered during the winter. Especially, in
contexts where high quality health surveillance data is
lacking, these findings can contribute to a better under-
standing of local heat thresholds and people’s adaptive
capacity. Such better understanding can support the
design of local thermal comfort standards, early heat
warning systems and future adaptation projections in
light of climate change. As our results indicate, these
projections should not only take into account changes
in maximum temperatures, but also factor in minimum
temperatures during the winter and spring months.
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